

Welcome to the EV3 Classroom

Contents:

	Introduction
	Connect the EV3

	The dashboard

	The programming canvas

	The block palette

	Display eyes

	Press a button

	Press left/right

	Press up/down

	Sensor
	Real-time dasboard

	Touch sensor

	Color sensor

	Distance sensor

	Rotation sensor

	Motor
	Display speed and position

	Remote
	The role of the buttons

	Detect a button press

	Controlling the robot

	Controlling motor speed

	Memorize a path

	Display
	Display an image

	Move the eyes

	Show a beating heart

	Write lines of text

	Write in different styles

	Write at position (x, y)

	Display sensor values

	Set the status light

	Oscilloscope
	The EV3 display

	Characters used

	Display a horizontal line

	Display a vertical line

	Display a grid

	Draw a dot

	Display a scope trace

	Measure continously

	Sound
	Say hello

	Count to three

	Stop all sounds

	Repeat a sound

	Start playing a beep

	Play a timed beep

	Play beep while pressed

	Toggle beep when pressed

	Change volume and pitch

	Use the rotary encoder

	Play a melody

	Change the tempo

	Short and long notes

	Statistics
	Random list

	Calculate the minimum

	Calculate the maximum

	Calculate sum and average

	Timer
	Display the timer

	Record intermediate times

	Measure EV3 speed

	Kitchen timer

	Clock

	Drawing robot
	Lift the pen

	Define functions

	Move the robot

	Create a move function

	Create a line function

	Turn the robot

	Draw a polygon

	Draw a star

	Draw a letter

	A function with 3 arguments

	Define letters as functions

	Draw numbers in 7-segment style

	Morse code
	Drawbot

	Play a dot or dash

	Make this a function

	Draw the Morse code for Q

	Decompose a sequence with modulo

	Create a function

	Robot Arm
	Motors and sensors

	Lift the arm

	Rotate the arm

	Move continously

	Limit the lift

	Limit the rotation

	Display current position

	Go to a random position

	Create a calibrate function

	Record arm positions

	Saving values in a list

	Replaying the list

	Reset the list

	Open and close the hand

	Remember the state

	Gyro Boy
	Reverse engineering

	Startup

	Get the loop time

	Angle from rate

	Rate from angle

	The PD controller

	Motor control

	Shutdown when falling

	Driving with the remote control

	Puppy

	Color Sorter

	Annex
	File format

	Open the .lmsp file

	The icon.svg file

	The manifest.jsn file

	The scratch.sb3 file

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This tutorial shows how to program the LEGO MINDSTORMS EV3 robot with the EV3 Classroom software.

Connect the EV3

In order to download programs, your robot needs to be connected via USB cable or Bluetooth.
When your EV3 is connected to your computer, the red dot next to the EV3 brick icon turns green, and all the attached motors and sensors are shown.

[image: ../_images/intro_icons.png]

The dashboard

When your EV3 is connected you can click the brick icon to open the dashboard.
The dashboard provides useful information about:

	EV3 name

	firmware version

	battery level

	motors and sensors

	real-time values

[image: ../_images/dashboard.png]
The dashboard displays real-time values of sensors and motors.
You can choose which value you want display.

[image: ../_images/motor_value.png]
An Update button will appear when new firmware is available.

You can rename the brick by clicking on the ... menu.

[image: ../_images/rename.png]

The programming canvas

The programming canvas is where you will create programs. It consists of:

	block palette

	programming area

	tab bar with open projects

	dashboard overview

	controls to zoom, redo, undo, download, etc.

The block palette

The block palette contains the available blocks grouped by functionality.

[image: ../_images/palette.png]

	to use a block, drag it to the canvas.

	to delete a block, drag it back to the palette

To zoom, redo and undo use these 5 buttons

[image: ../_images/controls.png]

Display eyes

In our first program we are going to display an emotion on the EV3 screen.

[image: ../_images/intro1.png]
To download and execute the program click on the blue button.

[image: ../_images/intro_download.png]
When you download and execute the program, the robot displays this

[image: ../_images/intro1s.png]
The program continues to display this image until you quit the program with the red stop button.

[image: ../_images/intro_stop.png]
You can select a different image and try again.

[image: ../_images/intro1_menu.png]

Press a button

Use the center button to change the image on the EV3.
When pressing that botton, we show a different image (Eyes/Neutral) but just for 2 seconds.
After that we come back to the original image.

[image: ../_images/intro1b.png]
When you download and execute the program you can observe, your program get’s feedback from the EV3.
Every time you press the center button, the part of the code activated
will have a yellow outline for 2 seconds.

Press left/right

You can add more buttons to your program.
For example change the image shown when pressing left/right.

[image: ../_images/intro1c.png]

Press up/down

You can add even more buttons to your program.
For example change the image shown when pressing up/down.

[image: ../_images/intro1d.png]
You can download this file:

intro.lmsp

Sensor

Sensors perceive the environment and send data to the robot.

Real-time dasboard

The sensors are connected to the robot via ports 1 to 4.
Small icons at the top of the program show the current values.

[image: ../_images/sensor_icon.png]

	the touch sensor is pressed (value=1)

	the gyros sensor shows 109°

	the color sensor sees the color red (value=5)

	the ultrasound sensor measures a distance of 32.6 cm

The motors are connected to ports A to D.
They contain rotation sensors and display the current angular position:

	the medium-size motor on port A is at 40°

	the large motor on port B is at 26°

	the large motor on port C is at 56°

Touch sensor

The touch sensor can be used on robot to detect physical touch.
It can be mounted as a bumper or an antenna.

We program it to say something when the touch sensor is pressed.

[image: ../_images/touch_pressed.png]
But we can also program it to do something when it is released.

[image: ../_images/touch_released.png]

Color sensor

When the color sensors sees red or green it pronounces these colors

[image: ../_images/color.png]

Distance sensor

Now let’s use a different method. We will continously measure the distance and display it.
For this we will use the forever loop.

On line 3 we write once the explanation distance sensor.
Inside the loop, we write continously the value measured with the disance sensor.

[image: ../_images/distance.png]

Rotation sensor

As we have seen in the beginning, all the motors have a rotation sensor built-in.
We can use the wheels as input knobs and display the values.

[image: ../_images/sensor_rot.png]
If you look carefully, you notice the values are positive to one side, negative to the other.
At the start of the program, the value is always 0.

Do you notice a problem?
Let’s say you go up to:

100

This occupies 3 characters.
Once written, the caracters are not erased when the number becomes smaller.
If you return back to 99 the display will now show 990.
And when you’re back at 9 the display will now show:

900

There is a trick to correct this.
The green operator join allows you to attach a couple of empty spaces after the number.
These will erase any extra digits.

[image: ../_images/sensor_rot2.png]
We even can do better. We can add a unit after the number.
Take care to add 1 space before and 4-5 spaces afterwards.
Your string shoud look like this: _degrees____.

Motor

With the motors the robot can move around.

Display speed and position

Each motor has a rotational sensor.
You can read:

	angular position (degrees)

	angular speed (degrees/sec)

[image: ../_images/motor_speed.png]

Remote

The EV3 has an infrared sensor. We connect it to port 4.

The sensor has three functions:

	proximity

	remote

	beacon heading

[image: ../_images/remote.png]
Here we select remote.

In order to be able to control multiple robots separately, the remote control has 4 different channels.

The role of the buttons

In the top icon view you can see the sensor state.

[image: ../_images/remote_icon.png]
When pushing the buttons on the remote control you will get:

	0 : no button

	1 : left-top

	2 : left-bottom

	3 : right-top

	4 : right-bottom

	9 : activate beacon button

You can also press two buttons at the same time:

	5 : top two

	6 : diagonal down

	7 : diagonal up

	8 : bottom two

	10 : left two

	11 : right two

Detect a button press

When a button is pressed on the remote control, we can play a sound.
For exemple for the left side buttons

[image: ../_images/remote_left.png]

	top left : play left

	bottom left : play backwards

Push a button and hold it for 2-3 seconds.
Then release it. This will activate the no left button pressed event,
which should rather be called left button released event.

[image: ../_images/remote_no_left.png]
We can program the right side as well.

	top right : play right

	bottom right : play forward

[image: ../_images/remote_right.png]
When one of the right buttons is released we do this:

[image: ../_images/remote_no_right.png]
There is one larger button at the top.
It activates the beacon and has a toggle function:

	pushing it once, turns on the green LED

	pushing it again, turns the LED off

When pressed, we play the sound activate

[image: ../_images/remote_beacon.png]

Controlling the robot

Now we can program the remote unit to control the movement of the robot.
We use the left buttons to control the forward/backward movement.

[image: ../_images/remote_forward_backward.png]
We use the right buttons to control the left/right movement.

[image: ../_images/remote_left_right.png]

Controlling motor speed

A more flexible way would be if we could also control the speed.
We createa variable speed and set it to 0 initially.

	the top button increases the speed by 10

	the bottom button decreases the speed by 10

[image: ../_images/control_speed.png]
We use the beacon button for the emergency brake.

[image: ../_images/control_brake.png]
And the right side buttons are used to pivot left and right, as long as the buttons are pressed.

[image: ../_images/control_turn.png]

Memorize a path

Display

The EV3 can display images and write text.

Display an image

You can display an image for a specified time duration.
The following program displays neutral eyes for 2 seconds.

[image: ../_images/display_2s.png]
After 2 seconds the screen is cleared and becomes white.
There is also an option for displaying an image continously, without erasing.

[image: ../_images/display.png]
There is a command to clear the screen.

[image: ../_images/display_clear.png]
The command display for X seconds can be composed from:

	display image

	wait X seconds

	clear display

[image: ../_images/display_wait2s.png]

Move the eyes

You can use the 5 buttons to display eyes which look into the direction of the button.
We start with a neutral position, and can return to that position with the center button.

[image: ../_images/eyes_start.png]
With the left/right buttons you can move the eyes to the left and to the right.

[image: ../_images/eyes_left.png]
With the up/down buttons you can move the eyes up and down.

[image: ../_images/eyes_up.png]

Show a beating heart

By displaying two images in repetition we can create a simple animation.
The following loop displays two hearts, a small one and a larger one.

We define a variable time which we set to 0.5.
Then we enter a forever loop where we:

	play a click sound

	display the large heart for time seconds

	display the small heart for 2*time seconds

[image: ../_images/heart_start.png]
The up/down buttons serve to change the time variable by increments of 0.1.

[image: ../_images/heart_set.png]

Write lines of text

You can write text to one of 12 lines.
The following program sets the variable x to 1 and increases it to 12 in a loop,
in order to write text on each line.

[image: ../_images/write_12lines.png]
This is the result:

line 1
line 2
line 3
line 4
line 5
line 6
line 7
line 8
line 9
line 10
line 11
line 12

We also can slow it down and write line by line.

[image: ../_images/write_slow.png]

Write in different styles

	The second write instruction allows to write at any position (x, y)

	and to use one out of 6 styles:

	normal black

	bold black

	large black

	normal white

	bold white

	large white

[image: ../_images/write_style.png]

Write at position (x, y)

The following program uses two rotary encoders to write the letter x at position (x, y).

[image: ../_images/write_xy.png]
It produces output like this:

x=80
y=20
 x

Display sensor values

Sometimes it is useful to display multiple sensor values on the display.
This program displays 4 sensor values on the first 4 lines.

[image: ../_images/sensors.png]
It produces output like this:

123
0
2
34.5

To better write this line of information we can define a function which:

	adds a text

	writes the number

	adds extra space after it (to erase erroneous digits)

	increments the line number

[image: ../_images/sensors_def.png]
Now we can display these values with an explanatory text (position, speed, etc.)

[image: ../_images/sensors_text_number.png]
It produces output like this:

position = 123
speed = 0
color = 2
distance = 34.5

Set the status light

The status light around the buttons can be set to:

	green

	orange

	red

It also can be set to flashing mode called:

	green pulse

	orange pulse

	red pulse

[image: ../_images/status_light.png]

Oscilloscope

You will be surprised that the EV3 text display can be tweaked to create an oscilloscope.

The EV3 display

The EV3 has a 178 × 128 pixel Monochrome display. The corners have these coordinates:

	top-left - (1, 1)

	bottom-left - (1, 128)

	top-right - (178, 1)

	buttom-right - (178, 128)

It can display:

	12.8 lines of small text

	22 characters long

The small character occupy 10x8 pixels. One character is

	9 pixels high

	7 pixels wide

For exemple an A is composed of these pixels:

1 2 3 4 5 6 7
 x
 x
 x x
 x x
 x x
 x x
 x x x x x
x x
x x

Characters used

For the oscilloscope we are going to use the vertical bar:

1 2 3 4 5 6 7
 x
 x
 x
 x
 x
 x
 x
 x
 x

the horizontal bar (underscore):

1 2 3 4 5 6 7

x x x x x x x

Display a horizontal line

With this information we are ready to display a horizontal line at position y.
We define the variables x and y.

We write backwards.
The reason for this is that the 7x9 pixel character is printed on a 8x10 pixel field.
In fact the left and the top 1-pixel-wide line is erased.

So we initialize x to 178, and decrement by the caracter width of 7.
With regards to y there is a -8 pixel offset.

[image: ../_images/horizontal.png]

Display a vertical line

Then we define the vertical(x) function.

So we initialize y to 128, and decrement by the caracter height of 9.
With regards to x there is a -4 pixel offset.

[image: ../_images/vertical.png]

Display a grid

Finally we can draw a grid.

[image: ../_images/grid.png]

Draw a dot

The function write text at (x, y) can place a character at the position (x, y).
To draw an arbitrary curve using dots, we could use the dot (.) or the hyphen (-).

But the best way is to use an underscore (_) followed by a space character.
The space character is offset by 2 pixels and erases the 6 unused pixels of the underscore.
This allows us to draw a dot every 2nd pixel.

[image: ../_images/dot.png]
The example below draws a diagonal line starting at (1, 1).

[image: ../_images/dot_call.png]

Display a scope trace

Now we have all the elements to program an oscilloscope.
We start at x=1 and loop until x>175.
At each iteration we increase x by 2.

The y value is the angular gyro velocity.
We display it numerically on line 1.
And we plot it with an offset of 64 to the screen.

[image: ../_images/scope.png]
With a button press we can acquire a single trace of 88 samples.

[image: ../_images/scope_once.png]

Measure continously

We can place it inside a loop and measure continously.

[image: ../_images/scope_loop.png]

You can download the programs so far:
scope.lmsp

Sound

The EV3 can also play sounds and music.

Say hello

We start with the simple program to say hello when pressing the center button.

[image: ../_images/play_hello.png]

Count to three

Next we create a program which counts to three.

[image: ../_images/play_123.png]
There is another block called start sound. What is the difference?

Try to count like this.

[image: ../_images/start_123.png]
This block does not wait for the sound to finish.
It starts immediately the next block and replaces the previous sound which barely has started with the new sound.
Thus this program only plays the last sound (three).

To give the program time for the sound, we have to insert a wait block.
This allows to play a sound precisely every second.

[image: ../_images/start_123_timed.png]

Stop all sounds

The stop all sounds block stops the currently running sound.
If you press it while running one, two, three,
it stops immeditly the current sound and plays the next one in the sequence.

[image: ../_images/stop_sound.png]
Download:
sound1.lmsp

Repeat a sound

With a loop we can repeat a sound a given number of times.
For example we can repeat the sound LEGO three times.

[image: ../_images/repeat_3.png]
We can also repeat as long a button is pressed.

[image: ../_images/repeat_pressed.png]
Finally it’s a bit more complicated to start repetition with a first button press
and stop repetition with a second button press.

We need to define a variable repeating which we initialize to 0.
Then we enter a forever loop. Inside the loop we have an if block.

If repeating = 1 then we play the sound.

[image: ../_images/repeat_forever.png]
Next we program the button to toggle the variable repeating between the values 0 and 1.
For our feedback, we also print this value to the screen.

[image: ../_images/repeat_toggle.png]
Download:
sound2.lmsp

Start playing a beep

The start playing beep block starts a beep.
With a keybord we can chose the pitch.

[image: ../_images/beep_keyboard.png]
The sound will be playing continously. We can use a second button to stop the sound.

[image: ../_images/beep_start_stop.png]
There are 3 different ways to play a beep with only 1 button:

	play a timed beep

	play beep while button is pressed

	toggle beep when button is pressed

Play a timed beep

The play bee function has two arguments:

	pitch

	duration

It allows to give a duration to the sound.
In the followign example we play the sound for 0.2 seconds.

[image: ../_images/beep_timed.png]

Play beep while pressed

Buttons have two associated events:

	pressed

	released

We can use these two events to program a button
which plays a sound only while the button is being pressed.

[image: ../_images/beep_pressed.png]

Toggle beep when pressed

The last way is an on/off toggle button.
This method needs a variable sound which is going to store the state of the sound:

	0 = sound is on

	1 = sound is off

We initialize the variable sound to 0 (off) at the start.

[image: ../_images/beep_toggle0.png]
When the button is pressed, we toggle the variable sound
by using the expression sound = 1-sound

Then we enter an if-else block:

	if sound = 1 (off) we start playing

	if sound = 0 (on) we stop playing

[image: ../_images/beep_toggle.png]
Download:
sound3.lmsp

Change volume and pitch

We can control the volume and pitch of of a sound.
First we start by creating two variables called intensity and pitch.

We set intensity to 50 and pitch to 60.
Then we enter a loop where we first display these two values to teh screen.
Then we produce a short beep repeating every 0.5 second.

[image: ../_images/volume_start.png]
Now we can use the 4 buttons to change the two variables pitch and intensity.

[image: ../_images/volume_pitch.png]
The pitch has been initalized to the value 60. These numbers correspond to:

60 C
61 C#
62 D
63 D#
64 E

Use the rotary encoder

We can use the rotary encoder to change pitch.
In get the pitch in half-tone steps we:

	divide by 45 to adjust sensitivity to 45° steps

	offset by 60 to start with the C

	take the floor to get integers (half tones)

[image: ../_images/pitch_rotary.png]

Play a melody

We can play beeps in sequence to play a melody.
For example to play the music of this famous French folk song Frère Jacques

[image: ../_images/jacques.gif]
It is quite straightforward to program the first measure.
If we want 120 beats per minute (120 bpm) each beat must be 0.5 seconds.

[image: ../_images/music_seq.png]

Change the tempo

If we want to change the tempo, then it would be better to code the duration of the beep with a variable.
We create the variable t (time) and initialize it to 0.5 seconds.
Also, we repeat the first 4 notes in a loop.

[image: ../_images/music_loop.png]
With the up/down buttons we can select the tempo.

[image: ../_images/music_tempo.png]

Short and long notes

Not all the notes have the same duration.
The white ones are twice as long.
We use the expression t*2 as the duration.

[image: ../_images/music_part2.png]
On the other hand some other notes only have half the lenght.
We use the expression t/2 for their duration.

[image: ../_images/music_part3.png]
And this is the final part.

[image: ../_images/music_part4.png]
Download:
music.lmsp

Statistics

In this section we look at a list of numbers and calculate

	minimum value and its position

	maximum value and its position

	sum

	average

Random list

For this exercice we use a list with 8 random numbers between 1 and 99.
This way we can print them on the first line of the display.

[image: ../_images/rand.png]
We call this function in the start event and also with the left button.

[image: ../_images/rand_call.png]
The result of this function looks like this:

86 35 49 54 37 6 93 62

Calculate the minimum

At the first iteration i=1 we set

	min = list[1]

	minpos = 1

Then we iterate through the rest of the list.
If we find a number which is smaller, we take it as the new minimum.

	min = list[i]

	minpos = i

[image: ../_images/min.png]
We call this function with the down button.

[image: ../_images/min_call.png]
The result of this function looks like this:

86 35 49 54 37 6 93 62

min = 6
at 6

Calculate the maximum

Again, at the first iteration i=1 we set

	max = list[1]

	maxpos = 1

Then we iterate through the rest of the list.
If we find a number which is larger, we take it as the new maximum.

	max = list[i]

	maxpos = i

[image: ../_images/max.png]
We call this function with the up button.

[image: ../_images/max_call.png]
The result of this function looks like this:

86 35 49 54 37 6 93 62

max = 93
at 7

Calculate sum and average

To get the sum we add all elements of the list together.
The average is obtained by dividing the sum by the number of elements.

[image: ../_images/sum.png]
We call this function with the center button.

[image: ../_images/sum_call.png]
The result of this function looks like this:

86 35 49 54 37 6 93 62

max = 422
avg = 52.75

Timer

The EV3 has a timer which starts counting when the program starts.

Display the timer

The timer is a varible which is incremented by the micro-processor.
It tells the time in seconds since start-up or the last timer reset.
It has milli-second precision.

[image: ../_images/timer_forever.png]
The reset timer function sets the timer back to 0.

[image: ../_images/timer_reset.png]
The when timer event activates a single event when the timer crosses the given threshold.

[image: ../_images/timer_when.png]

Record intermediate times

We can record intermediate times and write them to the screen.

[image: ../_images/timer_intermediate.png]

Measure EV3 speed

Now we can measure how much it takes for the EV3 to execute its operations.
The idea is to repeat a function 1000 times in a loop to have a good precision.
Let’s define a function timing which:

	increments the line number

	writes a text

	multiplies the timer with 1000 (to obtain microsecons)

	add us

	reset the timer for the next mesasurement

[image: ../_images/timing.png]
We will also use a self-defined function add.

[image: ../_images/timing_func.png]
These are several loops used to make the timings.

[image: ../_images/timing_call.png]
This is the result:

loop: 43 us
set: 62 us
mul: 92 us
sin: 101 us
fun: 927 us

This gives us a rough idea how long different blocks take to execute:

	43 us for a loop

	20 us for a set (variable assignment)

	30-40 us for a math operation (add, mul, sin, etc.)

	900 us for a user-defined function (My block)

While basic operations take 50-100 us, the user-defined functions have a 20-times overhead.

Kitchen timer

To program this timer we will use the technique of the state machine.
In our case we have 3 states:

	reset

	count

	alarm

We define 3 variables:

	delay is the duration of the count-down in seconds

	state is one of the strings reset, count, alarm

	timeout is the point in time of the alarm

In the reset state we set the delay with the up/down buttons.

[image: ../_images/timer_set.png]
With the center button we set the timeout to timer + delay and switch to the count state.

[image: ../_images/timer_start.png]
With the left button we stop the alarm sound and return to the reset state.

[image: ../_images/timer_stop.png]
The state machine consists of a forever loop with 3 if* blocks which check for the 3 states.

	in reset state, we just show the delay

	in count state, we show the count-down

	in alarm state, we repeat the alarm sound

[image: ../_images/timer_states.png]
Notice here, that we never need to reset the timer.
This can be important in timing applications for not losing precision.

The timer is displayed in line 1 and the state in line 2.

Clock

In this section we build and program a coockoo clock with 2 hands.

Drawing robot

In this chapter we build a drawing robot.

This robot uses three motors:

	the small one to lift the pen

	the large ones to move

To have a higher precision, it uses the small wheels.
The pen is place right in the center between the two wheels.

[image: ../_images/draw_icon.png]

Lift the pen

Try to turn up the small motor lever to the verticl.
If the horizontal postion was 0°, it will be -90°.

The angle decreseases as we lift the pen.
We can now program the up/down buttons to move the pen.
As we want to make this movement as quick as possible, we set the speed to 100%.

For the down movement we set a time. This is necessary, as we let the motor hit a mechanical limit.
This trick is a calibration without using a sensor. We move the motor to a known position.

[image: ../_images/draw_pen.png]

	up: move by 45°

	down: move during 0.1 seconds

Define functions

A program becomes much readable and versatile when using function.
Let’s define two functions up and down

[image: ../_images/pen_def.png]
Now we can use this two functions and associate them with the buttons.
The code is much more readable.

[image: ../_images/pen_call.png]
But there is another advantage. In a large program, we may use the pen in many places.
If we change the pen mechanics, or correct a bug with the pen up/down movement,
there is one single place to make such a correction

Move the robot

We go no to moving the robot.
We are going to use motors B and C for movement.
In order to obtain precise drawing results, we set the speed to 20%.

[image: ../_images/draw_init.png]
So how much does the robot advance with 1 rotation ?
It is difficult to measure from the robot,
but it becomes easy if the robot is going to draw a line.

[image: ../_images/draw_line.png]
Now you can measure the line. It is about 94 mm long.

Create a move function

Now we have all the information to create a move function with an argument.
So go ahead and create a new function with one parameters and these labels.

[image: ../_images/move_make.png]
With the rule of three we can calculate the number of rotations for any distance.
The number of rotations is distance/94.

[image: ../_images/move_def.png]
Now we can call this function with a specfic argument.
For example 50 mm. Try it and measure the length of the line.

[image: ../_images/move_call.png]

Create a line function

We can go one step further, and directly create a line function.

[image: ../_images/line_def.png]
We can now call the line function to draw a line of for example 120 mm.

[image: ../_images/line_call.png]

Turn the robot

Now let’s turn the robot on place.
First we draw a line 100 mm. Then we pivot by 1 wheel rotation to the left.
And finally we draw a second line of 100 mm.

[image: ../_images/turn_set.png]
We find that the robot turns by 82 degrees.
This allows us to create a turn function.

[image: ../_images/turn_def.png]
Now we can call this function with a 90° angle.

[image: ../_images/turn_call.png]

Draw a polygon

We have now everything needed to draw a regular polygon.
We just use a loop to repeat n sides of a regular polygon.
Then we turn an angle of 360/n degrees.
For example we can draw a hexagon with a side length of 50 mm.

[image: ../_images/polygon.png]
Now we can turn this into a function.

[image: ../_images/polygon_def.png]
Now we can use the polygon function to draw a pentagon with a side length of 40 mm.

[image: ../_images/polygon_call.png]

Draw a star

The the star polygon is drawn exactly as the polygon,
but the turning angles are multiples of the normal polygon angle.
For example, turning 360/5 results in a pentagon.
However turning twice that angle, 2x360/5, creates a 5-pointed start.

We create a star function which allows as to draw n/m star polygons.

[image: ../_images/star_def.png]
Now lets draw such a 5-pointed star

[image: ../_images/star_call.png]
You can download the programs so far:
draw1.lmsp

Draw a letter

We have everything in place to draw a letter.
For exemple to draw the letter E inside a rectangle of 30 x 40 mm
we do this:

[image: ../_images/draw_e.png]
At the end we place the robot to the beginng of the next letter.

A function with 3 arguments

If you look at the previous program, you notice it’s pretty long.
But it consists of a sequence of line, move and turn functions.
We could combine these three functions in one.
Let’s make this function with 3 arguments:

[image: ../_images/turn_line_def.png]
Using this new function, we can reduce the number of function calls from 15 to 7.
It is easier to understand, as each line corresponds now to a segment of the letter.

[image: ../_images/turn_line_call.png]

Define letters as functions

The next step is to define a function for each letter.
We define the letter E

[image: ../_images/letter_e.png]
We define the letter L

[image: ../_images/letter_l.png]
And now we can write the word ELLE

[image: ../_images/letter_elle.png]

Draw numbers in 7-segment style

Morse code

In this section we program the robot to create Morse code.

Samuel Morse invented this code which uses dots and dashes to encode letters.
He looked at the frequency of letters and assigned the shortes codes to the most frequent letters.

Here is the code

[image: ../_images/morse_chart.png]
Create a dot

Drawbot

This section uses the Drawbot from the previous section.
You will use these functios

[image: ../_images/draw_funcs.png]
You can download this program which contains already this functions as your starting point:
draw.lmsp

Play a dot or dash

Let’s start with drawing a dot.
That’s just a line of lenght 0 mm.
We play a sound which is defined by the duration it takes to draw that dot.

[image: ../_images/dot1.png]
The dash is the same, just 3 mm long.

[image: ../_images/dash.png]
The basic symbols are separated by 3 mm of distance.

Make this a function

We could now make two functions dash and dot and place the 4 lines of code inside.
However since they are very similar, we will make just dash and give it a parameter.

[image: ../_images/dash_def.png]
Now we can call it with these two parameters

	0 to draw a dot

	1 to draw a dash (3 mm long)

[image: ../_images/dash_call.png]

Draw the Morse code for Q

Now we can program for example the code for the letter Q.
It’s dash-dashes-dot-dash. We have to add an extra 3 mm space to separate it from the next letter.

[image: ../_images/letter_q.png]
We could define a fonction for all 26 letters.
But there is a better way

Decompose a sequence with modulo

The modulo function or mod function returns the result of a divison.
In our case we will use mod 10 which will give us the reminder of a divison by 10,
or in other words it gives us the last digit of the number:

21011 mod 10 = 1
2101 mod 10 = 1
210 mod 10 = 0
21 mod 10 = 1
2 mod 10 = 2

The function floor returns the integer part of a number we get from the division by 10:

floor 2101.1 = 2101
floor 210.1 = 210
floor 2.1 = 2

It is still the letter Q, but the sequence is read from the back.

[image: ../_images/modulo.png]

Create a function

We can now create a function which encodes a number sequence into Morse code.
The number sequence has to be defined in reverse order.
The code is composed of 3 digits:

	0 to indicate a dot

	1 to indicate a dash

	2 to indicate the end of the sequence

The end marker is necessary because in numbers preceding zeros are ignored.

[image: ../_images/encode_def.png]
The encode function is used to define a function for each letter (A, B, C, etc.)

[image: ../_images/encode_call.png]
We can compose words by using these functions.
As en example we print the letters ABCDE.

[image: ../_images/encode_abcde.png]
You can download the programs so far:
morse.lmsp

Robot Arm

In this chapter we control a robot arm.
You can:

	lift the arm

	rotate the arm

	open and close the hand

 Gyro Boy

Gyro Boy

Gyro Boy is a self-balancing robot.

 Puppy

Puppy

Interact with this charming robot. Pet it, feed it, and experience its reactions.

 Color Sorter

Color Sorter

Scan and load colord objects and let the Color sorter place the in the right area.

 Annex

Annex

In this annexe we look at the file format and other technical stuff.

File format

The EV3 Classroom application stores projects with a .lmsp extension.
You can remember this as LEGO MINDSTORMS Scratch Program.

When you create your first project, it is called Project 1.lmsp

The file inspector shows:

	Type: EV3 Project Archive

	Size: 40 985 bytes (41 KB)

Open the .lmsp file

The Project 1.lmsp is in fact a ZIP file. You can:

	make a copy of it,

	change the extension from .lmsp to .zip

	decompress the ZIP file

You will get a Project 1 folder with 3 files:

	icon.svg

	manifest.jsn

	scratch.sb3

The icon.svg file

This file contains an image of the program, probably to be displayed in Home > Recent projects.

[image: ../_images/icon.svg]

The manifest.jsn file

This file contains information about the connection, zoom level, position, etc.

{
 "autoDelete": true,
 "created": "2020-02-07T15:58:32.427Z",
 "hardware": {
 "=h{q!08=bSKjnG!;0#eZ": {
 "address": "IOService:/AppleACPIPlatformExpert/PCI0@0/AppleACPIPCI/XHC1@14/XHC1@14000000/PRT2@14200000/EV3@14200000/Xfer data to and from EV3 brick@0/AppleUserUSBHostHIDDevice",
 "description": "",
 "connection": "usb-hid",
 "name": "EV3",
 "type": "ev3",
 "serial": "0016533d0a6c",
 "hubState": {
 "programRunning": false
 },
 "lastConnectedSerial": "0016533d0a6c"
 }
 },
 "id": "lKDY_8BjjFjI",
 "lastsaved": "2020-04-11T16:00:46.620Z",
 "size": 0,
 "name": "Project 1",
 "slotIndex": 0,
 "showAllBlocks": false,
 "state": {
 "playMode": "download",
 "canvasDrawerTab": "monitorTab"
 },
 "version": 1,
 "zoomLevel": 0.8250000000000002,
 "workspaceX": 120.00000000000034,
 "workspaceY": 220.00000000000006,
 "extensions": [
 "ev3events",
 "ev3display"
]
}

The scratch.sb3 file

This is a SB3 file, based on the MIT Scratch 3.0 format.

You can again:

	replace the .sb3 extension with .zip

	decompress the archive

You will get a folder called scratch which contains:

	svg file

	wav file (Meow)

	png file

	project.json file

This JSON file contains:

{
 "targets": [
 {
 "isStage": true,
 "name": "Stage",
 "variables": {},
 "lists": {},
 "broadcasts": {},
 "blocks": {},
 "comments": {},
 "currentCostume": 0,
 "costumes": [
 {
 "assetId": "14d134f088239ac481523b3c2c6ecd8c",
 "name": "backdrop1",
 "bitmapResolution": 1,
 "md5ext": "14d134f088239ac481523b3c2c6ecd8c.svg",
 "dataFormat": "svg",
 "rotationCenterX": 47,
 "rotationCenterY": 55
 }
],
 "sounds": [
 {
 "assetId": "83c36d806dc92327b9e7049a565c6bff",
 "name": "Meow",
 "dataFormat": "wav",
 "format": "",
 "rate": 44100,
 "sampleCount": 37376,
 "md5ext": "83c36d806dc92327b9e7049a565c6bff.wav"
 }
],
 "volume": 0,
 "tempo": 60,
 "videoTransparency": 50,
 "videoState": "on",
 "textToSpeechLanguage": null
 },
 {
 "isStage": false,
 "name": "7OQe8zk4TyyTWFib4vkW",
 "variables": {},
 "lists": {},
 "broadcasts": {},
 "blocks": {
 "xYhpfMLy1ynSQzb93O1W": {
 "opcode": "ev3events_whenProgramStarts",
 "next": "]}sBQp1+Wg:TSU[;Qw?S",
 "parent": null,
 "inputs": {},
 "fields": {},
 "shadow": false,
 "topLevel": true,
 "x": 34,
 "y": -19
 },
 "]}sBQp1+Wg:TSU[;Qw?S": {
 "opcode": "ev3display_displayImageForTime",
 "next": null,
 "parent": "xYhpfMLy1ynSQzb93O1W",
 "inputs": {
 "DURATION": [
 1,
 [
 4,
 "2"
]
]
 },
 "fields": {
 "IMAGE": [
 "Neutral",
 null
]
 },
 "shadow": false,
 "topLevel": false
 }
 },
 "comments": {},
 "currentCostume": 0,
 "costumes": [
 {
 "assetId": "93ca32a536da1698ea979f183679af29",
 "name": "8my-jkz-3zNRywbMFwa-",
 "bitmapResolution": 1,
 "md5ext": "93ca32a536da1698ea979f183679af29.png",
 "dataFormat": "png",
 "rotationCenterX": 240,
 "rotationCenterY": 180
 }
],
 "sounds": [
 {
 "assetId": "83c36d806dc92327b9e7049a565c6bff",
 "name": "Meow",
 "dataFormat": "wav",
 "format": "",
 "rate": 44100,
 "sampleCount": 37376,
 "md5ext": "83c36d806dc92327b9e7049a565c6bff.wav"
 }
],
 "volume": 100,
 "visible": true,
 "x": 0,
 "y": 0,
 "size": 100,
 "direction": 90,
 "draggable": false,
 "rotationStyle": "all around"
 }
],
 "monitors": [],
 "extensions": [
 "ev3events",
 "ev3display"
],
 "meta": {
 "semver": "3.0.0",
 "vm": "0.2.0-prerelease.20190619042313",
 "agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36 (KHTML, like Gecko) EV3Classroom/1.0.0 Chrome/69.0.3497.106 Electron/4.0.4 Safari/537.36"
 }
}

 Index

Index

_images/letter_e.png
30

30

30

_images/letter_elle.png

_images/intro_stop.png

_images/jacques.gif
e

o

Fre- re Jac- ques,

Fre- re Jac- ques,

Dor- mez vous?

Dor- mez vous?

52. i . et =
=== === E e
5,

nes les ma- ti- nes, som- nes les ma-t- nes, Din din, dom, din, din, don.

_images/letter_l.png

_images/scope_loop.png
clear display

norzomal @)

_images/letter_q.png

_images/sensor_icon.png

_images/scope_once.png
[when right~ button pressed +
g cloar dieplay

oot @)

_images/sensor_rot2.png

_images/sensor_rot.png
P when program staris

forever

g i @ A dogeescoued atine @)

_images/sensors_def.png

_images/sensors.png
>

when program starts.

ropeat unti s conter v button pressed?

;G
- @ ——
L

_images/star_call.png

_images/sensors_text_number.png
‘

_images/scope.png
O

2

_images/reset.png
I —

@ o wesogmnscomes

_images/intro_download.png

_images/intro_icons.png

_images/intro1d.png
g dsplay Eyes/angry -

g deplay Eyos Knocked out +

_images/intro1s.png

_images/remote_speed.png
g playboop @ tor @ soconas

_images/remote_right.png
g Py sound Inormatin /Fight + il done

g Py sound Inormatin / Forward + untl done

_images/rename.png
RENAME EV3 BRICK

_images/remote_stop.png
[pley sound Mechanical 18iip 1+ untl done

_images/repeat_forever.png

_images/repeat_3.png
LY ... - I

[Pleysound Communication /LEGO + untl done

_images/repeat_toggle.png
EY

_images/repeat_pressed.png
o - D

@ Pleysound Communicaton / Hollo = unt done

_images/remote_no_left.png
Py sound Inormation /Stop » unti don

_images/remote_left_right.png
@) sunmons QD) = @ % wees

_images/remote_no_right.png
g ey sound Informaton / Stan

_images/timer_set.png

_images/timer_states.png
o i

_images/timer_start.png
uuuuu

_images/timer_when.png

_images/timer_stop.png

_images/timing1.png
i

_images/timing.png
define timing text

())
e on) on @) @D @ e (@8

_images/timing_func.png

_images/timing_call.png
1000

loop:

1000

cot:

1000

1000

1000

123

fun:

-

_images/touch_pressed.png

_images/start_123_timed.png
when up v button

_images/start_123.png
B when right buton pressed -

_images/status_light.png
g sotsuausighio g

g sotsuuslightio orange v

g cotsuusignio red v

g sotstauslightto red puise v

g sotsuausigo off v

_images/startup.png
> when program starts

forever

roset

_images/sum.png

_images/stop_sound.png
B v doun - buton prssed =

g stopall sounds

_images/timer_forever.png
>

when program starts.

g v (tmer) at @) . @) win font targe black +

_images/sum_call.png

_images/timer_reset.png

_images/timer_intermediate.png
g e (tmer atiine (line

(e)5(0)

_images/star_def.png

_images/control_turn.png
@ v wprghbuton preseed -
) wenmovns QCEED = @ *wooes

@ sartmong (R = (spaed) % spees

_images/controls.png
Q

2

~

S C

_images/control_brake.png

_images/control_speed.png
change | sposd = | by (@)

Xy

crange sped = by @)

@) sarmovns CEEIED (sposd) pue0

_images/dash_def.png
0

_images/dashboard.png
EV3 - oscomecr
| Fimare vice

=] = 100%

5% v

_images/dash.png
&

g startplaying beep (@)

r v button prossed v

g stopalisounds

_images/dash_call.png

_images/display.png
= s

G deplay EyesiDoun v

loft v button pressed +

_images/motor_value.png
Degrees

Rotations
Current Speed

_images/display_2s.png

_images/move_def.png

_images/move_call.png

_images/music_loop.png
when left » button pressed v

_images/move_make.png
Make a block

move mm

Add an input
number or text

Add an input Add a label
boolean

_images/min_call.png

_images/min.png

_images/morse_chart.png
D> X>N

ABCDEFGHIJKLMNOPQRST

_images/modulo.png
2101

_images/motor_speed.png
>

forever

when program starts.

_images/motor_control.png
s e o (powet) > @

_images/dot.png

_images/dot1.png
&

g startplaying beep (@)

r v button prossed v

g stopalisounds

_images/display_wait2s.png
button _pressed +

- B

G deplay EyesiDoun v

war @) soconts
g

cloar display

_images/distance.png
P when program staris

g e aine @

forever

g vine (00 - Jasuncain (am=)) e @

B

_images/draw_funcs.png
My Blocks

Make a Block

_images/draw_icon.png

_images/dot_call.png

_images/draw_e.png

_images/draw_init.png
>

when program starts.

_images/line_def.png
define line distance mm

move distance mm

_images/line_call.png

_images/max_call.png
LAY T

Y.X

_images/max.png

_images/display_clear.png

_images/encode_def.png
3

_images/eyes_left.png
G cisplay Epes /micdio

G cisplay Eyos /Micdlo right

_images/encode_abcde.png
When center v button pressed v

_images/encode_call.png
210 2001 20101

2001 20

_images/falling.png
@ A- sopmowr
@ o sepmowr

war @ socont

_images/grid.png
174

_images/eyes_start.png
when program starts.

display Eyes / Neutral

button

when center + pressed +

display Eyes / Neutral

_images/eyes_up.png
g derlay Besitp~

G deplay EyesiDoun v

_images/rand.png

_images/remote.png
Proximity

Remote.

Beacon Heading

_images/rand_call.png

_images/remote_forward_backward.png

_images/remote_beacon.png
@0 4+ whenbeacon 1+ beaconactive

_images/remote_left.png
G Py sound Informatin /Lef + unt done

@ Py sound Iformation / Backwards » un done

_images/remote_icon.png
()
295

(&
295

_images/polygon.png

_images/play_hello.png
button prossed

_images/polygon_def.png

_images/polygon_call.png
rovoon @ s @ o [

_images/draw_line.png
LY ... - I

@) rove towad e tor Q) rotmons =

_images/draw_pen.png
>

when program starts.

up v button pressed

wn chckss = ior @) dogree -

down v button pressed v

wn chckss < tor @) secons -

_images/intro1.png
> when program starts

_images/heart_start.png
> when program sarts

forever

1|

display Expressions / Heartlarge + for (time | seconds

[diplay Exprossions /Heartsmall = for (time) * (@) seconds

_images/horizontal.png
@ vinon romatbiack =

_images/intro1c.png
g dspley Eyes /Bottom et =

g dsplay EyesPinchright =

_images/intro1_menu.png
> when program sarts

_images/intro1b.png
- e

_images/pen_call.png
B wnen doun + bon o+

_images/palette.png
@
)

woors

Movement

straight 0

straight 0

_images/pid.png
O oG oG oG O® @

_images/pen_def.png
01

_images/play_123.png
ol Y e

_images/pitch_rotary.png
v [pehelte toore o @ @ o dogmencamed | @)

g stortplayingboep pitch

g e son (ich) @ =t @) @ vinront large bick =

_images/music_part3.png
70

B

B

_images/music_part2.png

_images/music_seq.png

_images/music_part4.png
7

_images/music_tempo.png

_images/hand_toggle.png
open

closed

@ 4+ o coin = o @) s~

_images/heart_set.png

_images/hand_init.png
>
@ v o @
@ 2+ o cookusew i @) seconin

when program starts.

_images/arm_calibrate.png
B

01

_images/arm_down.png
B+ stopmotor

® B+ startmotor clockwise v

nav.xhtml

 Table of Contents

 		
 Welcome to the EV3 Classroom

 		
 Introduction

 		
 Connect the EV3

 		
 The dashboard

 		
 The programming canvas

 		
 The block palette

 		
 Display eyes

 		
 Press a button

 		
 Press left/right

 		
 Press up/down

 		
 Sensor

 		
 Real-time dasboard

 		
 Touch sensor

 		
 Color sensor

 		
 Distance sensor

 		
 Rotation sensor

 		
 Motor

 		
 Display speed and position

 		
 Remote

 		
 The role of the buttons

 		
 Detect a button press

 		
 Controlling the robot

 		
 Controlling motor speed

 		
 Memorize a path

 		
 Display

 		
 Display an image

 		
 Move the eyes

 		
 Show a beating heart

 		
 Write lines of text

 		
 Write in different styles

 		
 Write at position (x, y)

 		
 Display sensor values

 		
 Set the status light

 		
 Oscilloscope

 		
 The EV3 display

 		
 Characters used

 		
 Display a horizontal line

 		
 Display a vertical line

 		
 Display a grid

 		
 Draw a dot

 		
 Display a scope trace

 		
 Measure continously

 		
 Sound

 		
 Say hello

 		
 Count to three

 		
 Stop all sounds

 		
 Repeat a sound

 		
 Start playing a beep

 		
 Play a timed beep

 		
 Play beep while pressed

 		
 Toggle beep when pressed

 		
 Change volume and pitch

 		
 Use the rotary encoder

 		
 Play a melody

 		
 Change the tempo

 		
 Short and long notes

 		
 Statistics

 		
 Random list

 		
 Calculate the minimum

 		
 Calculate the maximum

 		
 Calculate sum and average

 		
 Timer

 		
 Display the timer

 		
 Record intermediate times

 		
 Measure EV3 speed

 		
 Kitchen timer

 		
 Clock

 		
 Drawing robot

 		
 Lift the pen

 		
 Define functions

 		
 Move the robot

 		
 Create a move function

 		
 Create a line function

 		
 Turn the robot

 		
 Draw a polygon

 		
 Draw a star

 		
 Draw a letter

 		
 A function with 3 arguments

 		
 Define letters as functions

 		
 Draw numbers in 7-segment style

 		
 Morse code

 		
 Drawbot

 		
 Play a dot or dash

 		
 Make this a function

 		
 Draw the Morse code for Q

 		
 Decompose a sequence with modulo

 		
 Create a function

 		
 Robot Arm

 		
 Motors and sensors

 		
 Lift the arm

 		
 Rotate the arm

 		
 Move continously

 		
 Limit the lift

 		
 Limit the rotation

 		
 Display current position

 		
 Go to a random position

 		
 Create a calibrate function

 		
 Record arm positions

 		
 Saving values in a list

 		
 Replaying the list

 		
 Reset the list

 		
 Open and close the hand

 		
 Remember the state

 		
 Gyro Boy

 		
 Reverse engineering

 		
 Startup

 		
 Get the loop time

 		
 Angle from rate

 		
 Rate from angle

 		
 The PD controller

 		
 Motor control

 		
 Shutdown when falling

 		
 Driving with the remote control

 		
 Puppy

 		
 Color Sorter

 		
 Annex

 		
 File format

 		
 Open the .lmsp file

 		
 The icon.svg file

 		
 The manifest.jsn file

 		
 The scratch.sb3 file

_images/arm_icon.png
IR R YRR

o

_images/arm_left.png

_images/arm_forever.png
>

when program starts.

forever

B e on @ o cegreoscomes @ = @), @) winione o back =

_images/arm_hand.png
B when wp - buton pressed >

_images/arm_list.png
Make a List

thing

_images/arm_myblock.png
My Blocks

Make a Block

_images/arm_lift.png

_images/arm_light.png
-l e

_images/arm_pos.png
G e

S ——"r

_images/arm_random.png

_images/arm_record.png

_images/arm_right.png
= s

® Ce statmotor counterclockwise v

fight +button _ pressed v

CAESY e s

® Cv stopmotor

_images/arm_rotate.png
[o - Yo e

- ™

_images/arm_replay.png
Cv degre

_images/arm_reset.png

_images/arm_touch.png
buton pr

_images/arm_up.png
button

w v pressed v

® B startmotor counterclockwise v

[~ r—_,

® B stopmotor

_images/arm_speed.png
> when program sarts

_images/arm_start.png
P> whon program starts

@ i s @
@ o wmein @
@ cr it @

calibrate

forever

B wie o0 @ o dogmencounied @) ot @) @ vinton largobiack =

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/beep_keyboard.png
LidLds

c(r2)

_images/beep_pressed.png
g stopall sounds

_images/arm_var.png
Variables

Make a Varisble

_images/beep_toggle.png

_images/beep_toggle0.png

_images/beep_start_stop.png
R~ - TR G|
g sunplaying beop @)

B vhen o - buton prosed =

g stopalisounds

_images/beep_timed.png
up v bution

_images/color.png
L : - I -

0l : - T - -

_images/blocks.png
Undo
Red

Clean up Blocks
Add Comment

Delete 262 Blocks

_images/body_angle.png
@D ©)

_static/down.png

_static/file.png

_images/write_12lines.png

_images/write_style.png
™™ [

bold black

large black

normal white |

bold white

_images/write_slow.png
g cloardisplay

wi v @
Qz‘j

g e join @ (x atine (x

_static/ajax-loader.gif

_images/write_xy.png
R ... - I

forever

seconds

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down-pressed.png

_images/turn_call.png

_images/touch_released.png
T+ when released +

_images/turn_line_call.png
30

20

30

20

30

_images/turn_def.png
loft: 100

